Automated individual tree crown delineation from LIDAR data using morphological techniques

نویسندگان

  • L Jing
  • B Hu
  • H Li
  • J Li
چکیده

In current tree crown delineation from LiDAR data, treetops and 3D geometric shapes of tree crowns are frequently extracted from LiDAR-derived Crown Height Model (CHM) and used as references to localize and delineate crowns. However, it is difficult to detect deciduous treetops and delineate deciduous tree crowns. The 3D shape of a crown, which can be derived from CHM, may be taken as a half ellipsoid, and any horizontal slice of the ellipsoid contains the treetop and indicates not only the location but also the spatial extent of the crown. Based on such slices, a novel multi-scale method for individual tree crown delineation from CHM was proposed in this study. This method consists mainly of two steps: (1) morphologically open the CHM over the scale range of target tree crowns; and (2) take local maxima within each resulting opened CHM as the horizontal slices of target crowns at the corresponding scale level and integrate all the slices within the scale range together to represent the spatial distribution of target crowns. In an experiment on CHMs over two natural closed canopy forests in Ontario, Canada, the proposed method accurately delineated the majority of the tree crowns from closed canopy forests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory

The objective of this study is to develop new algorithms for automated urban forest inventory at the individual tree level using LiDAR point cloud data. LiDAR data contain three-dimensional structure information that can be used to estimate tree height, base height, crown depth, and crown diameter. This allows precision urban forest inventory down to individual trees. Unlike most of the publish...

متن کامل

A New Method for Individual Tree Delineation and Undergrowth Removal from High Resolution Airborne Lidar

High density airborne LiDAR, for example FLI-MAP 400 data, has opened an opportunity for individual tree measurement. This paper presents a method for individual tree delineation and undergrowth vegetation removal in forest area. The delineation of individual trees involves two steps namely 1) tree crown delineation based on density of high points (DHP) and 2) separation of dominant trees and u...

متن کامل

Individual Tree Crown Delineation Using Multi-scale Segmentation of Aerial Imagery

With the development of remote sensing techniques, parameters of individual trees for forest inventory can be extracted efficiently from high-resolution remote sensing imagery or LiDAR (light detection and ranging) data rather than using field surveys [1]-[4]. As a prerequisite step, individual tree crown (ITC) delineation from highresolution imagery or LiDAR data is one critical issue in curre...

متن کامل

A Region-Based Hierarchical Cross-Section Analysis for Individual Tree Crown Delineation Using ALS Data

In recent years, airborne Light Detection and Ranging (LiDAR) that provided three-dimensional forest information has been widely applied in forest inventory and has shown great potential in automatic individual tree crown delineation (ITCD). Usually, ITCD algorithms include treetop detection and crown boundary delineation procedures. In this study, we proposed a novel method called region-based...

متن کامل

Tree Crown Delineation from High Resolution Airborne Lidar Based on Densities of High Points

Tree detection and tree crown delineation from Airborne LiDAR has been focusing mostly on utilizing the canopy height model (CHM). This paper presents a method for individual tree crown delineation based on densities of high points (DHP) from the high resolution Airborne LiDAR. The DHP method relies on the fact that the density of received laser pulses above a certain height is high at the cent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013